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Abstract. The space of the torsion (0,3)-tensors of all linear connec-
tions on almost contact manifolds with B-metric is decomposed in 11
orthogonal and invariant subspaces with respect to the action of the
structural group. Thus, a classification of the connections on the con-
sidered manifolds with respect to the properties of their torsion tensor is
generated. Two known natural connections are characterized regarding
this classification.
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Introduction

The investigations of linear connections on almost contact manifolds with
B-metric take a central place in the study of the differential geometry of
these manifolds. Linear connections are characterized mainly by their torsion
tensors. In accordance with our goals, it is important to classify the torsion
tensors of linear connections regarding their properties with respect to the
structures on the manifold.

Such a classification of the space of the torsion tensors is made in [3] in
the case of almost complex manifolds with Norden metric. These manifolds
are the even dimensional analogue of the odd dimensional almost contact
manifolds.

The idea of decomposition of the space of the basic (0,3)-tensors gen-
erated by the covariant derivative of the fundamental tensor of type (1, 1)
is used by different authors in order to obtain of the basic classifications of
manifolds with additional tensor structures. For example, let us mention the
classification of almost complex manifolds with Norden metric given in [1],
of almost contact manifolds with B-metric – in [2], of Riemannian manifolds
with trace-free almost product structure – in [11], of almost paracontact
Riemannian manifolds of type (n, n) – in [8], of almost paracontact metric
manifolds – in [10].

The goal of this work is to classify all torsion tensors with respect to the
almost contact B-metric structure, which will be a base of further investig-
ations of linear connections on these manifolds.
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The present paper is organized as follows. In Sec. 1, we present some ne-
cessary facts about the considered manifolds. Section 2 is devoted to the
decomposition of the space of torsion tensors on almost contact manifolds
with B-metric. In Sec. 3, we find the position of two known natural connec-
tions in the obtained classification.

1. Almost Contact Manifolds with B-metric

Let (M,ϕ, ξ, η, g) be an almost contact manifold with B-metric or an
almost contact B-metric manifold, i.e. M is a (2n + 1)-dimensional differ-
entiable manifold with an almost contact structure (ϕ, ξ, η) consisting of an
endomorphism ϕ of the tangent bundle, a vector field ξ, its dual 1-form η

as well as M is equipped with a pseudo-Riemannian metric g of signature
(n, n+ 1), such that the following algebraic relations are satisfied

(1.1)
ϕξ = 0, ϕ2 = − Id+η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1,

g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y )

for arbitrary X, Y of the algebra X(M) on the smooth vector fields on M

[2].
Further, X, Y , Z will stand for arbitrary elements of X(M).
The structural group of (M,ϕ, ξ, η, g) is G × I, where I is the identity

on span(ξ) and G = GL(n;C) ∩ O(n, n). More precisely, it consists of real
square matrices of order 2n+ 1 of the following type





A B ϑT

−B A ϑT

ϑ ϑ 1



 ,
AAT −BBT = In,

ABT +BAT = On,
A,B ∈ GL(n;R),

where ϑ and its transpose ϑT are the zero row n-vector and the zero column
n-vector; In and On are the unit matrix and the zero matrix of size n,
respectively.

The associated metric g̃ of g on M is defined by

g̃(X,Y ) = g(X,ϕY ) + η(X)η(Y ).

The manifold (M,ϕ, ξ, η, g̃) is also an almost contact B-metric manifold.
Both metrics g and g̃ are necessarily of signature (n, n+1). The Levi-Civita

connection of g and g̃ will be denoted by ∇ and ∇̃, respectively.
The Nijenhuis tensor N of the contact structure is defined by

N := [ϕ,ϕ] + dη ⊗ ξ,

where [ϕ,ϕ](X,Y ) = [ϕX,ϕY ] + ϕ2 [X,Y ] − ϕ [ϕX,Y ] − ϕ [X,ϕY ] and
dη is the exterior derivative of the 1-form η. By analogy with the skew-
symmetric Lie bracket [X,Y ] = ∇XY −∇YX, let us consider the symmetric
bracket {X,Y } = ∇XY +∇YX. Hence we have {ϕ,ϕ}(X,Y ) = ϕ2{X,Y }+
{ϕX,ϕY }−ϕ{ϕX,Y }−ϕ{X,ϕY }. Additionally, we use the Lie derivative
with respect to ξ of the metric g, i.e. (Lξg) (X,Y ) = (∇Xη)Y + (∇Y η)X,
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as an alternative of dη(X,Y ) = (∇Xη)Y − (∇Y η)X. Then, we define the
associated tensor S with N by:

(1.2) S = {ϕ,ϕ} + (Lξg)⊗ ξ.

A classification of almost contact manifolds with B-metric is given in [2].
This classification, consisting of eleven basic classes F1, F2, . . . , F11, is made
with respect to the tensor field F of type (0,3) defined by

(1.3) F (X,Y,Z) = g
(

(∇Xϕ)Y,Z
)

and having the following properties

F (X,Y,Z) = F (X,Z, Y ) = F (X,ϕY,ϕZ) + η(Y )F (X, ξ, Z)

+ η(Z)F (X,Y, ξ).
(1.4)

Further, x, y, z will stand for arbitrary vectors in the tangent space TpM

of M at an arbitrary point p in M . If {ei} (i = 1, 2, . . . , 2n+1), as e2n+1 = ξ,
is a basis of TpM and

(

gij
)

is the inverse matrix of (gij), then the following
1-forms are associated with F :

(1.5)
θ(z) = gijF (ei, ej , z), θ∗(z) = gijF (ei, ϕej , z),

ω(z) = F (ξ, ξ, z).

2. A Decomposition of the Space of Torsion Tensors

The object of our considerations are the linear connections with torsion.
Thus, we have to study the properties of the torsion tensors with respect to
the contact structure and the B-metric.

If T is the torsion tensor of D, i.e. T (x, y) = Dxy−Dyx− [x, y], then the
corresponding tensor of type (0,3) is determined by T (x, y, z) = g(T (x, y), z).

Let us consider TpM at arbitrary p ∈ M as a (2n+1)-dimensional vector
space with almost contact B-metric structure (V, ϕ, ξ, η, g). Moreover, let T
be the vector space of all tensors T of type (0,3) over V having the skew-
symmetry by the first two arguments, i.e.

T = {T (x, y, z) ∈ R | T (x, y, z) = −T (y, x, z), x, y, z ∈ V } .

The metric g induces an inner product 〈·, ·〉 on T defined by

〈T1, T2〉 = giqgjrgksT1(ei, ej , ek)T2(eq, er, es)

for arbitrary T1, T2 ∈ T and a basis {ei} (i = 1, 2, . . . , 2n + 1) of V .
The standard representation of the structural group G × I in V induces

a natural representation λ of G× I in T as follows

((λa)T ) (x, y, z) = T
(

a−1x, a−1y, a−1z
)

for any a ∈ G× I and T ∈ T, so that

〈(λa)T1, (λa)T2〉 = 〈T1, T2〉, T1, T2 ∈ G× I.
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The decomposition x = −ϕ2x+η(x)ξ generates the projectors h and v on
V determined by h(x) = −ϕ2x and v(x) = η(x)ξ and having the properties

h ◦ h = h, v ◦ v = v, h ◦ v = h ◦ v = 0.

Therefore, we have the orthogonal decomposition V = h(V )⊕ v(V ).
Bearing in mind these projectors on V , we construct the partial decom-

position of T as follows.
At first, we define the operator p1 : T → T by

p1(T )(x, y, z) = −T (ϕ2x, ϕ2y, ϕ2z), T ∈ T.

It is easy to check the following

Lemma 2.1. The operator p1 has the following properties:

(i) 〈p1(T1), T2〉 = 〈T1, p1(T2)〉, T1, T2 ∈ T;
(ii) p1 ◦ p1 = p1.

According to Lemma 2.1 we have

W1 = im(p1) = {T ∈ T | p1(T ) = T} ,

W
⊥

1 = ker(p1) = {T ∈ T | p1(T ) = 0} .

Further, we consider the operator p2 : W⊥
1 → W⊥

1 defined by

p2(T )(x, y, z) = η(z)T (ϕ2x, ϕ2y, ξ), T ∈ W
⊥

1 .

We obtain immediately the truthfulness of the following

Lemma 2.2. The operator p2 has the following properties:

(i) 〈p2(T1), T2〉 = 〈T1, p2(T2)〉, T1, T2 ∈ W⊥
1 ;

(ii) p2 ◦ p2 = p2.

Then, bearing in mind Lemma 2.2, we obtain

W2 = im(p2) =
{

T ∈ W⊥

1 | p2(T ) = T
}

,

W
⊥

2 = ker(p2) =
{

T ∈ W
⊥

1 | p2(T ) = 0
}

.

Finally, we consider the operator p3 : W⊥

2 → W⊥

2 defined by

p3(T )(x, y, z) = η(x)T (ξ, ϕ2y, ϕ2z) + η(y)T (ϕ2x, ξ, ϕ2z), T ∈ W⊥

2

and we get the following

Lemma 2.3. The operator p3 has the following properties:

(i) 〈p3(T1), T2〉 = 〈T1, p3(T2)〉, T1, T2 ∈ W⊥
2 ;

(ii) p3 ◦ p3 = p3.

By virtue of Lemma 2.3, we have

W3 = im(p3) =
{

T ∈ W⊥

2 | p3(T ) = T
}

,

W4 = ker(p3) =
{

T ∈ W⊥

2 | p3(T ) = 0
}

.

From Lemma 2.1, Lemma 2.2 and Lemma 2.3 we have immediately
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Theorem 2.4. The decomposition

T = W1 ⊕W2 ⊕W3 ⊕W4

is orthogonal and invariant under the action of the group G × I. The sub-
spaces Wi (i = 1, 2, 3, 4) are determined by

W1 : T (x, y, z) = −T (ϕ2x, ϕ2y, ϕ2z),

W2 : T (x, y, z) = η(z)T (ϕ2x, ϕ2y, ξ),

W3 : T (x, y, z) = η(x)T (ξ, ϕ2y, ϕ2z) + η(y)T (ϕ2x, ξ, ϕ2z),

W4 : T (x, y, z) = −η(z)
{

η(y)T (ϕ2x, ξ, ξ) + η(x)T (ξ, ϕ2y, ξ)
}

(2.1)

for arbitrary vectors x, y, z ∈ V .

Corollary 2.5. The subspaces Wi (i = 1, 2, 3, 4) are characterized as fol-
lows:

W1 = {T ∈ T | T (v(x), y, z) = T (x, y, v(z)) = 0} ,

W2 = {T ∈ T | T (v(x), y, z) = T (x, y, h(z)) = 0} ,

W3 = {T ∈ T | T (x, y, v(z)) = T (h(x), h(y), z) = 0} ,

W4 = {T ∈ T | T (x, y, h(z)) = T (h(x), h(y), z) = 0} ,

where x, y, z ∈ V .

The torsion forms associated with T ∈ T are defined as follows:

(2.2)
t(x) = gijT (x, ei, ej), t∗(x) = gijT (x, ei, ϕej),

t̂(x) = T (x, ξ, ξ)

with respect to the basis {ei; ξ} (i = 1, 2, . . . , 2n) of V . Obviously, t̂(ξ) = 0
is always valid.

According to Corollary 2.5, (2.1) and (2.2) we obtain the following

Corollary 2.6. The torsion forms of T have the following properties in each
of subspaces Wi (i = 1, 2, 3, 4):

(i) If T ∈ W1, then t ◦ v = t∗ ◦ v = t̂ = 0;
(ii) If T ∈ W2, then t = t∗ = t̂ = 0;
(iii) If T ∈ W3, then t ◦ h = t∗ ◦ h = t̂ = 0;
(iv) If T ∈ W4, then t = t∗ = 0.

Further we continue decomposition of the subspaces Wi (i = 1, 2, 3, 4) of
T.

2.1. The subspace W1. Since the endomorphism ϕ induces an almost com-
plex structure on the orthogonal complement {ξ}⊥ of the subspace spanned
by ξ and the restriction of g on {ξ}⊥ is a Norden metric (because the almost
complex structure causes an anti-isometry on {ξ}⊥), then the decomposition
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of W1 is made as the decomposition of the space of the torsion tensors on
an almost complex manifold with Norden metric known from [3].

Let us consider the linear operator L10 : W1 → W1 defined by

L10(T )(x, y, z) = −T (ϕx,ϕy, ϕ2z).

Then, it follows immediately

Lemma 2.7. The operator L10 is an involutive isometry on W1 and com-
mutes with the action of G× I, i.e.

L10 ◦ L10 = idW1
, 〈L10(T1), L10(T2)〉 = 〈T1, T2〉,

L10((λa)T ) = (λa)(L10(T )),

where T1, T2 ∈ T, a ∈ G× I.

Therefore, the operator L10 has two eigenvalues +1 and −1, and the
corresponding eigenspaces

W
+
1 = {T ∈ W1 | L10(T ) = T} , W

−

1 = {T ∈ W1 | L10(T ) = −T}

are invariant orthogonal subspaces of W1.
In order to decompose W

−

1 we consider the linear operator L11 : W
−

1 →
W

−

1 defined by

L11(T )(x, y, z) = −T (ϕx,ϕ2y, ϕz).

We have

Lemma 2.8. The operator L11 is an involutive isometry and commutes with
the action of G× I.

According to the latter lemma, the eigenspaces

T11 =
{

T ∈ W
−

1 | L11(T ) = −T
}

, T12 =
{

T ∈ W
−

1 | L11(T ) = T
}

are invariant and orthogonal.
To decompose W+

1 , we define the linear operator L12 : W
+
1 → W

+
1 in the

following way:

L12(T )(x, y, z) = −
1

2

{

T (ϕ2y, ϕ2z, ϕ2x) + T (ϕ2z, ϕ2x, ϕ2y)

+T (ϕy, ϕ2z, ϕx) + T (ϕ2z, ϕx, ϕy)
}

.

We obtain

Lemma 2.9. The operator L12 is an involutive isometry and commutes with
the action of G× I.

Thus, the eigenspaces

T13 =
{

T ∈ W
+
1 | L12(T ) = −T

}

, T14 =
{

T ∈ W
+
1 | L12(T ) = T

}

are invariant and orthogonal.
Using Lemma 2.7, Lemma 2.8 and Lemma 2.9, we get the following
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Theorem 2.10. The decomposition

W1 = T11 ⊕ T12 ⊕ T13 ⊕ T14

is orthogonal and invariant with respect to the structural group.

Bearing in mind the definition of the subspaces T1i (i = 1, 2, 3, 4), we
obtain

Proposition 2.11. The subspaces of W1 are determined by:

T11 : T (ξ, y, z) = T (x, y, ξ) = 0,

T (x, y, z) = −T (ϕx,ϕy, z) = −T (x, ϕy, ϕz);

⇔ T (ξ, y, z) = T (x, y, ξ) = 0,

T (ϕx, y, z) = T (x, ϕy, z) = T (x, y, ϕz);

T12 : T (ξ, y, z) = T (x, y, ξ) = 0,

T (x, y, z) = −T (ϕx,ϕy, z) = T (ϕx, y, ϕz);

T13 : T (ξ, y, z) = T (x, y, ξ) = 0,

T (x, y, z)− T (ϕx,ϕy, z) = S
x,y,z

T (x, y, z) = 0;

T14 : T (ξ, y, z) = T (x, y, ξ) = 0,

T (x, y, z)− T (ϕx,ϕy, z) = S
x,y,z

T (ϕx, y, z) = 0.

Using Corollary 2.6 (i), Proposition 2.11 and (2.2), we obtain

Corollary 2.12. The torsion forms t and t∗ of T have the following prop-
erties in the subspaces T1i (i = 1, 2, 3, 4) of W1:

(i) If T ∈ T11, then t(x) = −t∗(ϕx), t(ϕx) = t∗(x);
(ii) If T ∈ T12, then t = t∗ = 0;
(iii) If T ∈ T13, then t(x) = t∗(ϕx), t(ϕx) = −t∗(x).
(iv) If T ∈ T14, then t = t∗ = 0;

Let us remark that each of the subspaces T11 and T13 can be decompose
additionally to a couple of subspaces — one of zero traces (t, t∗) and one of
non-zero traces (t, t∗).

The projection operators of T in T1i (i = 1, 2, 3, 4), following [3], are given
in the next
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Proposition 2.13. Let T ∈ T and p1i (i = 1, 2, 3, 4) be the projection
operators of T in T1i. Then

p11(T )(x, y, z) = −
1

4

{

T (ϕ2x, ϕ2y, ϕ2z)− T (ϕx,ϕy, ϕ2z)

−T (ϕx,ϕ2y, ϕz) − T (ϕ2x, ϕy, ϕz)
}

;

p12(T )(x, y, z) = −
1

4

{

T (ϕ2x, ϕ2y, ϕ2z)− T (ϕx,ϕy, ϕ2z)

+T (ϕx,ϕ2y, ϕz) + T (ϕ2x, ϕy, ϕz)
}

;

p13(T )(x, y, z) = −
1

8

{

2T (ϕ2x, ϕ2y, ϕ2z) + 2T (ϕx,ϕy, ϕ2z)

− T (ϕ2y, ϕ2z, ϕ2x)− T (ϕ2z, ϕ2x, ϕ2y)

−T (ϕy, ϕ2z, ϕx) − T (ϕ2z, ϕx, ϕy)

− T (ϕy, ϕz, ϕ2x)− T (ϕz, ϕx, ϕ2y)

+T (ϕ2y, ϕz, ϕx) + T (ϕz, ϕ2x, ϕy)
}

;

p14(T )(x, y, z) = −
1

8

{

2T (ϕ2x, ϕ2y, ϕ2z) + 2T (ϕx,ϕy, ϕ2z)

+ T (ϕ2y, ϕ2z, ϕ2x) + T (ϕ2z, ϕ2x, ϕ2y)

+T (ϕy, ϕ2z, ϕx) + T (ϕ2z, ϕx, ϕy)

+T (ϕy, ϕz, ϕ2x) + T (ϕz, ϕx, ϕ2y)

−T (ϕ2y, ϕz, ϕx) − T (ϕz, ϕ2x, ϕy)
}

.

Proof. Let us show the calculations about p11 for example. Lemma 2.7 im-
plies that the tensor 1

2
{T − L10(T )} is the projection of T inW

−

1 = T11⊕T12.
Using Lemma 2.8, we find the expression of p11 in terms of the operators
L10 and L11, i.e.

p11(T ) =
1

4
{T − L10(T )− L11(T ) + L11 ◦ L10(T )} ,

which implies the stated expression of p11. In a similar way we prove the
expressions for the other projectors under consideration.

We verify that p1i ◦ p1i = p1i and
∑

i p1i = idW1
for i = 1, 2, 3, 4. �

2.2. The subspace W2. Following the demonstrated procedure for W1, we
continue the decomposition of the other main subspaces of T with respect
to the almost contact B-metric structure.

Lemma 2.14. The operator L20, defined by

L20(T )(x, y, z) = η(z)T (ϕx,ϕy, ξ),
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is an involutive isometry on W2 and commutes with the action of the group
G× I.

Hence, the corresponding eigenspaces, determined by

T21 = {T ∈ W2 | L20(T ) = −T} , T22 = {T ∈ W2 | L20(T ) = T} ,

are invariant and orthogonal. Therefore, we have

Theorem 2.15. The decomposition

W2 = T21 ⊕ T22

is orthogonal and invariant with respect to the structural group.

Proposition 2.16. The subspaces of W2 are determined by:

T21 : T (x, y, z) = η(z)T (ϕ2x, ϕ2y, ξ), T (x, y, ξ) = −T (ϕx,ϕy, ξ);

T22 : T (x, y, z) = η(z)T (ϕ2x, ϕ2y, ξ), T (x, y, ξ) = T (ϕx,ϕy, ξ).

Then the tensors 1
2
{T − L20(T )} and 1

2
{T + L20(T )} are the projections

ofW2 in T21 and T22, respectively. Moreover, we have p2j◦p2j = p2j (j = 1, 2)
and p21 + p22 = idW2

. Therefore we obtain

Proposition 2.17. Let T ∈ T and p2j (j = 1, 2) be the projection operators
of T in T2j . Then

p21(T )(x, y, z) =
1

2
η(z)

{

T (ϕ2x, ϕ2y, ξ)− T (ϕx,ϕy, ξ)
}

,

p22(T )(x, y, z) =
1

2
η(z)

{

T (ϕ2x, ϕ2y, ξ) + T (ϕx,ϕy, ξ)
}

.

According to Proposition 2.6 (ii), Proposition 2.16 and (2.2) we obtain
the following

Corollary 2.18. The torsion forms of T are zero in each of subspaces T21

and T22, i.e. if T ∈ T2j (j = 1, 2), then t = t∗ = t̂ = 0.

2.3. The subspace W3.

Lemma 2.19. The following operators L3k (k = 0, 1) are involutive isomet-
ries on W3 and commute with the action of the group G× I:

L30(T )(x, y, z) = η(x)T (ξ, ϕy, ϕz) − η(y)T (ξ, ϕx, ϕz),

L31(T )(x, y, z) = η(x)T (ξ, ϕ2z, ϕ2y)− η(y)T (ξ, ϕ2z, ϕ2x).

By virtue of their action, we obtain consecutively the corresponding in-
variant and orthogonal eigenspaces:

W
−

3 = {T ∈ W3 | L30(T ) = −T} , W
+
3 = {T ∈ W3 | L30(T ) = T} ,

T31 =
{

T ∈ W
−

3 | L31(T ) = T
}

, T32 =
{

T ∈ W
−

3 | L31(T ) = −T
}

,

T33 =
{

T ∈ W
+
3 | L31(T ) = T

}

, T34 =
{

T ∈ W
+
3 | L31(T ) = −T

}

.

In such a way, we get
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Theorem 2.20. The decomposition

W3 = T31 ⊕ T32 ⊕ T33 ⊕ T34

is orthogonal and invariant with respect to the structural group.

Proposition 2.21. The subspaces of W3 are determined by:

T31 : T (x, y, z) = η(x)T (ξ, ϕ2y, ϕ2z)− η(y)T (ξ, ϕ2x, ϕ2z),

T (ξ, y, z) = T (ξ, z, y) = −T (ξ, ϕy, ϕz);

T32 : T (x, y, z) = η(x)T (ξ, ϕ2y, ϕ2z)− η(y)T (ξ, ϕ2x, ϕ2z),

T (ξ, y, z) = −T (ξ, z, y) = −T (ξ, ϕy, ϕz);

T33 : T (x, y, z) = η(x)T (ξ, ϕ2y, ϕ2z)− η(y)T (ξ, ϕ2x, ϕ2z),

T (ξ, y, z) = T (ξ, z, y) = T (ξ, ϕy, ϕz);

T34 : T (x, y, z) = η(x)T (ξ, ϕ2y, ϕ2z)− η(y)T (ξ, ϕ2x, ϕ2z),

T (ξ, y, z) = −T (ξ, z, y) = T (ξ, ϕy, ϕz).

By virtue of Corollary 2.6 (iii), Proposition 2.21 and (2.2) we obtain

Corollary 2.22. The torsion forms t and t∗ of T :

(i) are zero in the subspaces T3k (k = 2, 3, 4) of W3;
(ii) have no extra properties in T31 ⊂ W3.

Let us remark that T31 can be decompose additionally to three subspaces
determined by conditions t = 0, t∗ = 0 and t = t∗ = 0, respectively.
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Proposition 2.23. Let T ∈ T and p3k (k = 1, 2, 3, 4) be the projection
operators of T in T3k. Then

p31(T )(x, y, z) =
1

4

{

η(x)T (ξ, ϕ2y, ϕ2z)− η(y)T (ξ, ϕ2x, ϕ2z)

+ η(x)T (ξ, ϕ2z, ϕ2y)− η(y)T (ξ, ϕ2z, ϕ2x)

− η(x)T (ξ, ϕy, ϕz) + η(y)T (ξ, ϕx, ϕz)

− η(x)T (ξ, ϕz, ϕy) + η(y)T (ξ, ϕz, ϕx)
}

;

p32(T )(x, y, z) =
1

4

{

η(x)T (ξ, ϕ2y, ϕ2z)− η(y)T (ξ, ϕ2x, ϕ2z)

− η(x)T (ξ, ϕ2z, ϕ2y) + η(y)T (ξ, ϕ2z, ϕ2x)

− η(x)T (ξ, ϕy, ϕz) + η(y)T (ξ, ϕx, ϕz)

+ η(x)T (ξ, ϕz, ϕy) − η(y)T (ξ, ϕz, ϕx)
}

;

p33(T )(x, y, z) =
1

4

{

η(x)T (ξ, ϕ2y, ϕ2z)− η(y)T (ξ, ϕ2x, ϕ2z)

+ η(x)T (ξ, ϕ2z, ϕ2y)− η(y)T (ξ, ϕ2z, ϕ2x)

+ η(x)T (ξ, ϕy, ϕz) − η(y)T (ξ, ϕx, ϕz)

+ η(x)T (ξ, ϕz, ϕy) − η(y)T (ξ, ϕz, ϕx)
}

;

p34(T )(x, y, z) =
1

4

{

η(x)T (ξ, ϕ2y, ϕ2z)− η(y)T (ξ, ϕ2x, ϕ2z)

− η(x)T (ξ, ϕ2z, ϕ2y) + η(y)T (ξ, ϕ2z, ϕ2x)

+ η(x)T (ξ, ϕy, ϕz) − η(y)T (ξ, ϕx, ϕz)

− η(x)T (ξ, ϕz, ϕy) + η(y)T (ξ, ϕz, ϕx)
}

.

2.4. The subspace W4. Finally, we denote only W4 as T41 and it is de-
termined as follows

(2.3) T41 : T (x, y, z) = η(z)
{

η(y)t̂(x)− η(x)t̂(y)
}

.

Obviously, the projection operator p41 : T → T41 has the form

(2.4) p41(T )(x, y, z) = η(z)
{

η(y)t̂(x)− η(x)t̂(y)
}

.

As conclusion, combining Theorem 2.4, Theorem 2.10, Theorem 2.15 and
Theorem 2.20, we obtain the following main statement in this paper.

Theorem 2.24. The following decomposition in 11 factors of the vector
space T of the torsion tensors of type (0,3) of (M,ϕ, ξ, η, g) is orthogonal
and invariant with respect to the structural group G× I:

T = T11 ⊕ T12 ⊕ T13 ⊕ T14 ⊕ T21 ⊕ T22 ⊕ T31 ⊕ T32 ⊕ T33 ⊕ T34 ⊕ T41.
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3. The Classes of the Torsion Tensors and Known Natural

Connections

Let (M,ϕ, ξ, η, g) be an almost contact B-metric manifold. The tangent
space TpM at an arbitrary point p in M is a vector space equipped with an
almost contact B-metric structure.

There exist a countless number of linear connections on the tangent bundle
TM and each of them has a torsion tensor T as its fundamental invariant.
Then the subspace Tij, where T belongs, is an important characteristic of
the connection D. This statement is based on the following relation [4]:

g (DXY −∇XY,Z) =
1

2
{T (X,Y,Z) − T (Y,Z,X) + T (Z,X, Y )} .

In such a way the conditions for T described as the subspace Tij give rise to
the corresponding class of the connection with respect to its torsion tensor.

Thus, the conditions define the eleven basic classes of the torsion tensors
of the connections on the tangent bundle generated by an almost contact
B-metric manifold. Of course, the number of all classes under conversation
is 211 and their defining conditions are easily obtainable by the basic ones.

The special class T00 of the symmetric connections is defined by the condi-
tion T = 0. This class belongs to each of the defined classes. The Levi-Civita
connections ∇ and ∇̃ are symmetric and therefore they belongs to the class
T00.

In the following two subsections we discuss about two known natural
connections with torsion on (M,ϕ, ξ, η, g). Natural connections are a gener-
alization of Levi-Civita connections. A linear connection is called a natural
connection on (M,ϕ, ξ, η, g) if the almost contact structure (ϕ, ξ, η) and the
B-metric g (consequently also g̃) are parallel with respect to it. Let us recall
the following

Proposition 3.1 ([9]). A linear connection D is a natural connection on
(M,ϕ, ξ, η, g) if and only if

Q(x, y, ϕz) −Q(x, ϕy, z) = F (x, y, z),(3.1)

Q(x, y, z) = −Q(x, z, y),(3.2)

where Q(x, y, z) = g (Dxy −∇xy, z).

Now, we will prove the following

Theorem 3.2. A linear connection D is natural on (M,ϕ, ξ, η, g) if and
only if Dϕ = Dg = 0.

Proof. According to the proof of Proposition 3.1 in [9], conditions (3.1) and
(3.2) are equivalent to Dϕ = 0 and Dg = 0, respectively. Moreover, Dξ = 0
is equivalent to the relation Q(x, ξ, z) = −F (x, ξ, ϕz), which is a consequence
of (3.1). Finally, since η(·) = g(·, ξ), then supposing Dg = 0 we have Dξ = 0
if and only if Dη = 0. Thus, the statement is truthful. �
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Let us remark that in [12] there are introduced families of linear connec-
tions with different properties with respect to the almost contact B-metric
structure, which can be described in the frame of present classification re-
garding the torsion tensor.

3.1. The canonical connection in the classification of the torsion

tensors. In [7] is introduced a natural connection D on (M,ϕ, ξ, η, g) by

Dxy = ∇xy +
1

2

{

(∇xϕ)ϕy + (∇xη) y · ξ
}

− η(y)∇xξ.

This connection, studied for some of the basic classes in [5] and [6] under
the name a canonical connection, has a torsion tensor and the torsion forms
as follows:

T (x, y, z) =−
1

2

{

F (x, ϕy, ϕ2z)− F (y, ϕx, ϕ2z)
}

+ η(z)
{

F (x, ϕy, ξ) − F (y, ϕx, ξ)
}

+ η(x)F (y, ϕz, ξ) − η(y)F (x, ϕz, ξ),

(3.3)

t(x) =
1

2
{θ∗(x) + θ∗(ξ)η(x)} , t∗(x) = −

1

2
{θ(x) + θ(ξ)η(x)} ,

t̂(x) = −ω(ϕx).

We establish the position of D in the classification above by the following

Theorem 3.3. The canonical connection belongs to the following subspace
of T:

T12 ⊕ T13 ⊕ T14 ⊕ T21 ⊕ T22 ⊕ T31 ⊕ T32 ⊕ T33 ⊕ T34 ⊕ T41.

Proof. Applying Proposition 2.13, Proposition 2.17, Proposition 2.23 and
(2.4) for the torsion tensor T from (3.3), we obtain the components of T in
each of subspaces Tij :

p11(T )(x, y, z) = 0,

p12(T )(x, y, z) = −
1

4

{

F (ϕ2x, ϕ2y, ϕz) − F (ϕ2y, ϕ2x, ϕz)

−F (ϕx,ϕy, ϕz) + F (ϕy, ϕx, ϕz)} ,

p13(T )(x, y, z) = −
1

8

{

2F (ϕ2z, ϕ2y, ϕx) + F (ϕ2x, ϕ2y, ϕz)

−F (ϕ2y, ϕ2x, ϕz) + F (ϕx,ϕy, ϕz) − F (ϕy, ϕx, ϕz)
}

,

p14(T )(x, y, z) =
1

8

{

2F (ϕ2z, ϕ2y, ϕx)− F (ϕ2x, ϕ2y, ϕz)

+F (ϕ2y, ϕ2x, ϕz) − F (ϕx,ϕy, ϕz) + F (ϕy, ϕx, ϕz)
}

,
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p21(T )(x, y, z) = −
1

2
η(z)

{

F (ϕ2x, ϕy, ξ) − F (ϕ2y, ϕx, ξ)

−F (ϕx, y, ξ) + F (ϕy, x, ξ)} ,

p22(T )(x, y, z) = −
1

2
η(z)

{

F (ϕ2x, ϕy, ξ) − F (ϕ2y, ϕx, ξ)

+F (ϕx, y, ξ) − F (ϕy, x, ξ)} ,

p31(T )(x, y, z) =

= −
1

4
η(x)

{

F (ϕ2y, ϕz, ξ) + F (ϕ2z, ϕy, ξ) − F (ϕy, z, ξ) − F (ϕz, y, ξ)
}

+
1

4
η(y)

{

F (ϕ2x, ϕz, ξ) + F (ϕ2z, ϕx, ξ) − F (ϕx, z, ξ) − F (ϕz, x, ξ)
}

,

p32(T )(x, y, z) =

= −
1

4
η(x)

{

F (ϕ2y, ϕz, ξ)− F (ϕ2z, ϕy, ξ) − F (ϕy, z, ξ) + F (ϕz, y, ξ)
}

+
1

4
η(y)

{

F (ϕ2x, ϕz, ξ) − F (ϕ2z, ϕx, ξ) − F (ϕx, z, ξ) + F (ϕz, x, ξ)
}

,

p33(T )(x, y, z) =

= −
1

4
η(x)

{

F (ϕ2y, ϕz, ξ) + F (ϕ2z, ϕy, ξ) + F (ϕy, z, ξ) + F (ϕz, y, ξ)
}

+
1

4
η(y)

{

F (ϕ2x, ϕz, ξ) + F (ϕ2z, ϕx, ξ) + F (ϕx, z, ξ) + F (ϕz, x, ξ)
}

,

p34(T )(x, y, z) =

= −
1

4
η(x)

{

F (ϕ2y, ϕz, ξ)− F (ϕ2z, ϕy, ξ) + F (ϕy, z, ξ) − F (ϕz, y, ξ)

+ 2F (ξ, ϕy, ϕ2z)
}

+
1

4
η(y)

{

F (ϕ2x, ϕz, ξ) − F (ϕ2z, ϕx, ξ) + F (ϕx, z, ξ) − F (ϕz, x, ξ)

+ 2F (ξ, ϕx, ϕ2z)
}

,

p41(T )(x, y, z) = η(z) {η(x)ω(ϕy) − η(y)ω(ϕx)} .

�

3.2. The ϕKT-connection in the classification of the torsion tensors.

In [9], it is introduced a natural connection D on (M,ϕ, ξ, η, g), called a
ϕKT-connection, which torsion tensor T is totally skew-symmetric, i.e. a
3-form. It is proved that this connection exists only on the class F3⊕F7, i.e.
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the class of almost contact B-metric manifolds, where ξ is a Killing vector
field and the cyclic sum S of F by three arguments is zero. Alternatively,
the class F3 ⊕ F7 is characterized by the condition S = 0, defined by (1.2).
Then, D is determined by

g(Dxy, z) = g(∇xy, z) +
1

2
T (x, y, z),

where the torsion tensor T is defined by

(3.4) T (x, y, z) = −
1

2
S

x,y,z

{

F (x, y, ϕz) − 3η(x)F (y, ϕz, ξ)
}

.

Obviously, the torsion forms of the ϕKT-connection are zero.
From (3.4), in a similar way of Theorem 3.3, we get the following non-zero

components of T :

p12(T )(x, y, z) = −
1

2

{

F (x, y, ϕz) + F (y, z, ϕx) − F (z, x, ϕy)

+ η(y)F (z, ϕx, ξ) + η(z)F (x, ϕy, ξ)
}

,

p14(T )(x, y, z) = −F (z, x, ϕy) −
1

2
η(x)F (y, ϕz, ξ),

p21(T )(x, y, z) = 2η(z)F (x, ϕy, ξ),

p32(T )(x, y, z) = 2η(x)F (y, ϕz, ξ) + 2η(y)F (z, ϕx, ξ).

Therefore we have

Theorem 3.4. The torsion tensor of the ϕKT-connection belongs to the
following subspace of T:

T12 ⊕ T14 ⊕ T21 ⊕ T32.
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